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Abstract—In many fields, superior gains have been obtained
by leveraging the computational power of machine learning
techniques to solve expert tasks. In this paper we present
an application of machine learning to agriculture, solving a
particular problem of diagnosis of crop disease based on plant
images taken with a smartphone. Two pieces of information are
important here; the disease incidence and disease severity. We
present a classification system that trains a 5 class classification
system to determine the state of disease of a plant. The 5 classes
represent a health class and 4 disease classes. We further extend
the classification system to classify different severity levels for
any of the 4 diseases. Severity levels are assigned classes 1 - 5,
1 being a healthy plant, 5 being a severely diseased plant. We
present ways of extracting different features from leaf images
and show how different extraction methods result in different
performance of the classifier. We finally present the smartphone-
based system that uses the classification model learnt to do real-
time prediction of the state of health of a farmers garden. This
works by the farmer uploading an image of a plant in his garden
and obtaining a disease score from a remote server.

I. INTRODUCTION

Automation of expert tasks in various sectors is on the
increase in part due to advances in machine learning. In this
paper we tackle the challenge of automating diagnosis of
cassava viral diseases in plants from images of the leaves
of the plant taken in situ. Two outputs are of interest to the
agricultural researcher and farmers who will use such a system;
(1) a system that can determine the type of disease (incidence)
affecting the crops and (2) a system that can determine the
severity of that particular disease.

For this system, we look at the four major diseases affecting
the cassava plant (Manihot esculenta Cranz) in Africa; Cas-
sava brown streak disease (CBSD), Cassava mosaic disease
(CMD), Cassava Bacterial Blight (CBB) and Cassava green
mite (CGM). This presents as a multi-class classification
system. Presently severity of disease is scored from 1 to 5,
1 representing a healthy plant and 5 a severely diseased plant.
For each category of disease, we thus have other sub-classes
that represent how severe the disease is. This paper extends
previous work in this field and introduces the determination of
the severity of disease from leaf images of diseased cassava
plants using machine learning techniques.

A. Problem Context

Cassava is the second most important food crop in sub-
Saharan Africa after maize [1], [2]. The crop continues to
gain importance in Africa as a staple food eaten by more
than 500 million people a day in Africa [3] because of
its resilience under harsh environments, and its tolerance to
extreme ecological stress conditions and poor soils. As such,
the crop has exponentially gained the authority to curb food
insecurity and rural poverty. This has made Cassava an ideal
crop for small-holder farmers.

The crop is presently cultivated in around 40 African
countries where it has historically played an important famine-
prevention role. In Eastern and Southern Africa where drought
is a recurrent problem [4] cassava is also the preferred staple
food. However, crop yield is severly threatened by various
pests and diseases particularly CMD, CBSD, CGM and CBB.
Of the four, CMD and CBSD are the most devastating diseases
to the cassava yield in Eastern and Central Africa [5], [6] and
the greatest threats to the food security and livelihoods of over
200 million people.

B. Current methods of diagnosis

The current methods used for diagnosis involve experts
traveling to disparate parts of the country and visually scoring
the plants by looking at the disease symptoms manifested on
the leaves. This method tends to be erratic and very subjective;
it is not uncommon for experts to disagree on a score for a
particular plant. With our work, we can enable experts to have
a more reliable way of scoring disease as well as enabling
farmers in remote places do diagnosis of their crops without
need of an expert.

C. Related work

Application of machine learning in agriculture for purposes
of diagnosis is still a young field. Some related research has
been done already in other crops as well as in cassava including
[7], [8], [9], [10]. A common thread in this work is the use
of small samples in the training of the algorithms. Also for
most they present a binary classification problem attempting
to distinguish healthy from diseased plants. For some of
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the previous studies, images were also taken in controlled
environments where the light and image background could be
controlled.

With the advent of deep learning and convolutional neural
networks, the last couple of years has seen the research extend
to using these deep networks to make inferences on disease
in plants from images [11], [12]. This process automates the
in some sense the feature extraction process that needs to be
done. Results indicate improving levels of accuracy though
with a penalty due to the expense in terms of processing
time required for training these networks. Many other digital
image processing techniques have been used in the literature.
For brevity we will not cite all here but good reviews of the
techniques can be found here [13].

This research therefore builds on some of this previous
research to determine the state of health of cassava plants
from a large set of images (over 7K), captured in situ using
a smartphone. The large dataset also enables us to score the
severity of disease based on the leaf image. We explore the use
of some already existing techniques that have been applied to
solve the problem and others that have not been used in this
area. We use different feature extraction techniques to extract
from the images, color, interest points and shape information
and apply a battery of standard machine learning algorithms to
the combined featureset. We apply these techniques to a large
dataset of expert labeled leaf images of different cassava plant
diseases and severities.

The different sections explain how we go about with this
analysis. In section 2 we describe the data and the data
collection protocols. In section 3 we discuss the different
feature extraction mechanisms employed. Section 4 and 5
we delve into the classification of disease and severities and
section 6 we discuss the deployment of the system for use with
a smartphone.

The economic importance of diagnosing disease in cassava
particularly for Africa cannot be overstated. The normal life
span of a cassava plant is 9 - 12 months. Early detection
of disease in the garden can lead the farmer to apply early
interventions to save time and/or money.

II. THE LEAF IMAGE DATA

The data we used consists of 7,386 images of leaves of
cassava plants. The images are in 5 categories; the healthy class
of images (1476 examples) and the four classes of diseased
images representing the 4 diseases; CMD (3012 images),
CBSD (1751 images), CBB (425 images), and CGM (722
images). Figure 1 depicts typical leaf images of the 4 disease
classes. For the 4 disease classes, each data subset is broken
down further into 4 subsets representing disease severities 2 -
5 (severity level 1 is the healthy class).

The data was collected during a national pest and disease
survey by the National Crops Resources Research Institute
(NaCRRI) using smartphones. NaCRRI is the government
body of Uganda responsible for agricultural research in the
country. All the images collected were manually labelled by
experts from NaCRRI who scored each of the images for
disease incidence and severity.

A. Disease leaf symptoms

Each of the diseases cause some unique symptomatic fea-
tures to appear on the leaves as shown in Figure 1. We explain
what these symptoms are and how we extract representative
features in the next section. The four major diseases affecting
cassava and their symptoms include:

1) Cassava mosaic disease (CMD): This disease is the
most widespread cassava disease in East Africa and sub-
Saharan Africa and this greatly affects production of cassava.
CMD produces a variety of foliar symptoms that include mo-
saic, mottling, misshapen and twisted leaflets, and an overall
reduction in size of leaves and plants [14]. Leaves affected by
this disease have patches of normal green color mixed with
different proportions of yellow and white depending on the
severity. These chlorotic patches indicate reduced amounts of
chlorophyll in the leaves, which affects photosynthesis and thus
limits crop yield.

2) Cassava brown streak disease (CBSD): CBSD is
presently the most severe of the cassava diseases. It is vectored
by white flies and can also be transmitted through infected
cuttings. The disease is very common in East Africa and
in other cassava growing countries in sub-Saharan Africa.
The CBSD leaf symptoms consist of a characteristic yellow
or necrotic vein banding which may enlarge and coalesce
to form comparatively large yellow patches. Tuberous root
symptoms consist of dark-brown necrotic areas within the
tuber and reduction in root size and according to [15], leaf
and/or stem symptoms can occur without the development of
tuber symptoms.

3) Cassava bacterial blight (CBB): CBB is a major bacte-
rial disease. This disease is favored by wet conditions, however
large variations in the predominance and severity of symptoms
can vary depending on location, season and aggressiveness of
the bacterial strains. CBB leaf symptoms include; black leaf
spots and blights, angular leaf spots, premature drying and
shedding of leaves due to wilting of young leaves and severe
attack.

4) Cassava green mite (CGM): This disease causes white
spotting of leaves, which increase from the initial small spots to
cover the entire leaf thus loss of chlorophyll. Leaves damaged
by CGM may also show mottled symptoms which can be
confused with symptoms of cassava mosaic disease (CMD).
Severely damaged leaves shrink, dry out and fall off, which
can cause a characteristic candle-stick appearance.

III. FEATURE EXTRACTION

In order to be able to determine the state of disease based
on a leaf image, we need to extract representative disease
features from the image. The viral diseases in cassava manifest
mainly with color and shape deformations on the leaf. In
previous work [7], [8] we have extracted features that represent
color and shape particularly Hue histograms, Histograms of
Oriented Gradient (HOG) [16], Scale Invariant Feature Trans-
forms (SIFT) [17] and Speeded Up Robust Features (SURF)
[18] features on comparatively smaller datasets.

We have had good results in the past with Color and
SIFT features. For this work we require a system that can be
implemented on a server or mobile phone that can support this
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(a) Healthy (b) CBB (c) CGM (d) CMD (e) CBSD

Fig. 1: Sample images associated with the five disease classes of the classification problem.

Fig. 2: Examples of histograms (bottom) extracted from the
corresponding healthy and diseased images (top).

remote diagnosis by small holder farmers in Africa. For this
reason we required open source feature extraction tools. We
thus settled for Color and Oriented FAST and Rotated BRIEF
(ORB) [19] features. SIFT and SURF are patented and thus
not free for commercial use.

A. Color feature extraction

For the four types of diseases, color is an important feature
because the diseases tend to eat away at the chlorophyll of the
leaf giving it a yellowish hue. To extract these features we do
an HSV color transformation of the image and calculate the
normalized hue histogram of the image using 50 bins. Figure
2 depicts two sample images; a healthy image and a diseased
image, and their corresponding histograms extracted.

Fig. 3: Image with ORB interest keypoints identified

B. ORB feature extraction

ORB features offer a good alternative to the non-free SIFT
and SURF features both in computation cost and matching
performance [19]. ORB is a combination of a popular keypoint
detector algorithm, Features from Accelerated Segment Test
(FAST) and a well known feature description algorithm, Binary
Robust Independent Elementary Features (BRIEF). The ORB
algorithm tends to be superior to the two however because
it solves some of the problems of FAST e.g. computation of
orientations, as well as some of the drawbacks of BRIEF e.g.
poor performance on rotation. Combining the two also results
in a more powerful algorithm.

Figure 3 shows a depiction of ORB keypoints detected on
an image representing one of the viral cassava diseases.

The ORB detection algorithm identifies interest keypoints
on the image. As seen in the Figure 3 the keypoints are
scattered throughout the image with most centered round the
deformed part of the leaf. Each point is a 32 vector that
describes that particular keypoint at that particular location
uniquely. In order to get a uniform representative feature vector
of the image, we apply the bag-of-visual words technique that
clusters the different keypoints around 120 clusters represent-
ing the image. This forms a dictionary that is trained uniquely
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for each disease class.

To represent a new image using ORB features, keypoint
descriptors are extracted from the image and then mapped to
the cluster centers in the dictionary.

C. The extracted data

From the feature extraction process we derived two
datasets, a 7386 × 50 dataset representing the color hue his-
tograms and a 7386 × 120 dataset representing the generated
ORB feature vectors. The 7386 records represent 5 classes;
the healthy class (1476 examples), the CBB disease class
(425 examples), the CGM disease class (722 examples), the
CMD class (3012 examples) and the CBSD disease class (1751
examples).

IV. CLASSIFICATION OF DISEASE INCIDENCE

Our task here is to take features derived from the leaf
images representing the different diseases and train a suitable
classifier that can offer good performance. We used the scikit-
learn1 machine learning toolbox to train suitable classifiers.
Three classifiers were trained and used;

1) LinearSVC: A linear Support Vector Classifier was
trained on the data. To obtain appropriate algorithm parame-
ters, a grid search over a limited parameter space of C was done
for both ORB and color features, C ∈ [1, 10, 100, 1000]. The
C parameter trades off misclassification of training examples
against simplicity of the decision surface. A suitable parameter
C of 100 was obtained for both featuresets. For all the other
parameters we used the defaults from sklearn. Results in Table
I represent the 10-fold cross validated performance of the
algorithm on this 5-class problem.

2) KNN: A K-Nearest Neighbour algorithm was fitted to
the data as well. The appropriate value of K was obtained
by doing a grid search over a limited space of possible K
values for both ORB and color features, K ∈ [1 . . . 12]. The
appropriate K was found to be 1 for ORB and 10 for color
features. All other parameters were taken from the default
sklearn parameters. Table I shows the corresponding results.

3) Extra Trees: Extremely Randomized Trees have been
shown in the literature to perform well because they av-
erage over very many weak learners on various sub-
samples of the data. We find the appropriate number of
trees in the forest to use using grid search of 5 parame-
ters for ORB features n estimators ∈ [10, 20, 30, 40, 50],
and 7 parameters for color features n estimators ∈
[50, 100, 200, 300, 400, 500, 600]. The optimal number of trees
we find is 30 for ORB and 400 for color. We use default
parameters for the rest. Table I shows the corresponding
results.

Table I shows the performance of the algorithms on the
whole dataset. Results presented are of the 10-fold cross-
validated accuracy score of the different algorithms applied
to the data with a 95% confidence interval. We note a very
high performance for the ORB generated features for both
algorithms.

1http://www.scikit-learn.org

LinearSVC ExtraTrees k-NN

Color 80 48.94 44.68
ORB 99.98 99.88 100

TABLE I: Overall 10-fold cross-validated accuracy scores (%)
for different algorithms applied to the different leaf image
representations.

(a) CMD-L1 (b) CMD-L2 (c) CMD-L3 (d) CMD-L4 (e) CMD-L5

(f) CBSD-L1 (g) CBSD-L2 (h) CBSD-L3 (i) CBSD-L4 (j) CBSD-L5

Fig. 4: Sample images associated with the five severity levels
for CMD (top) and CBSD (bottom).

V. CLASSIFICATION OF DISEASE SEVERITY

Knowing the presence or absence of disease (incidence)
is important for the farmer, however knowing the severity of
disease is critical if appropriate and timely interventions are
to be taken to prevent crop yield loss. In the previous section
images representing different severities were merged together.
Here we split up each of the classes into 4 subclasses; the
healthy class, severity level 2, severity level 3 and severity
level 4; severity-4 possessing the most severe symptoms of the
4. We did not include severity level 5 for this analysis because
of the low quantities of images representing this severity class
for all diseases.

Figure 4 depicts images that represent the different sever-
ities for the two most common diseases; CMD and CBSD.
Severity of disease is assigned from severity levels 1 - 5 with
1 representing a healthy leaf and 5 a severely diseased leaf.
The cross validated performance of a Linear SVC classifier
applied to each of the disease categories is particularly quite
impressive for the ORB features compared to other features
extracted. We obtain accuracy scores of close to 99 %.

We also investigate the performance when all disease
categories are combined. Again we observe strong evidence of
high discriminatory power of our algorithm for these particular
ORB feature representations in the region of 99 % cross-
validated score for accuracy.

VI. SYSTEM DEPLOYMENT

The goal is to translate this work to a usable application
that a small holder farmer or researcher can use in the field to
diagnose disease in his garden, both the incidence and severity
of disease. To this end we implemented a smartphone-based
diagnostic system which a farmer with a smartphone can use
to get the state of health of his garden in real-time.
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Fig. 5: Screenshots of the smartphone application for remote
diagnosis of crop health.

The way the system works is that the farmer using his
smartphone can take an image of the diseased crop in his
garden, have that uploaded to a server which automatically
classifiers the disease and level of severity and relays this
information to the farmer in real-time. By using the application
at different locations in his field, the farmer is able to get a
sense of the state of health of his garden and plan appropriate
interventions. Figure 5 depicts screenshots of the smartphone
application in use.

The application uses a client server architecture with an
Android app as the client and a falcon rest backend python
framework acting as the server. The server runs the disease
diagnosis algorithm and provides results after analysing a
cassava leaf image. We use Retrofit, a type-safe REST client
for Android, as the networking library to make the HTTP calls.

VII. DISCUSSION

In this paper we have presented a smartphone-based diag-
nostic system for cassava crop health that leaverages machine
learning to solve the problem of identifying disease in the field
from analysis of plant leaf images. We have shown how we
extract the relevant features that represent disease from the
leaf images and train machine learning algorithms to be able
to differentiate diseases based on these features.

Different feature extraction techniques we selected
and tested. Particularly we extract color hue and ORB
shape/interest keypoint features from the leaf images. We
found ORB to be a fast and reliable replacement for SIFT and
SURF which are patented and non-free for this application.

Results indicate vastly varying performance for the Color
and the ORB featuresets. It is likely color which performed
well in previous studies fails here because all diseases tend to
present with a yellowish color. Previously color performend

well for the problem of differenting between a diseased and
healthy leaf. For differentiating between two or more diseases,
it appears not to do well. ORB on the other hand offers a much
superior performance when the feature vectors are extracted
using the bag-of-visual words approach.

We also present results obtained from applying different
algorithms in a multi-class classification system for diagnosing
the severity of disease based on the leaf images. Again we
notice considerable performance with the ORB features for
all algorithms. However the range of severities used in this
work is not complete due to insufficient data in severity level
5. However for practical purposes this may not be an issue
since most times by the time a plant gets to severity level
5 it is clearly visibly sick and can only be uprooted as an
intervention.

Results for the ORB features are unusually high so we fur-
ther investigated this result. As is evident, cross-validation and
use of different classifiers gives similar results, so it appears we
are not overfitting the data. We looked through the images and
noticed there were some repetitions of images resulting from
data collectors taking more than one picture of the same image
to improve clarity. The performance shown is after removing
duplicate data from the derived featuresets. On average we
notice about 40 duplicates in the whole derived dataset of 7386
samples, so this again doesnot account for the unusally high
performance. The classes are generally highly imbalanced but
even with down sampling performance does not change much.
We thus conclude that the feature extraction with ORB and
bag-of-visual words offered the superior advantage in this case.

We conclude by embedding this work into a smartphone
based diagnostic system for farmers in remote places. Partic-
ular dependencies of the system are the farmer must have a
smartphone and a working data connection. Some of the future
work will be in implementing a low power first pass offline
version of the application on the smartphone that can give a
preliminary diagnosis that can be ratified once the device gets
online.
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