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Abstract

Forecasting of outbreaks of armyworm (larvae of the moth Spodoptera exempta)

employs information from rain gauges and moth traps. Rainfall is an inde-

pendent variable, but moth catch is affected by rainfall, and outbreak risk is

affected by both moth catch and rainfall. A simple Bayesian network was

used to describe these relationships and so derive conditional probabilities.

The data were from a new initiative, community-based forecasting of army-

worm in Tanzania, in which outbreak risk for a village is determined locally

from a single moth trap and rain gauge located within the village. It was

found that, following a positive forecast, an armyworm outbreak was approx-

imately twice as likely to occur as would be expected by chance. If the fore-

cast was negative because of insufficient moths, outbreaks were half as likely

as would be expected by chance. If the forecast was negative because of

insufficient rain, however, the outbreak probability remained similar to

chance: an aspect of the forecast that requires improvement. Overall, a high

forecasting accuracy can be achieved by village communities using simple

rules to predict armyworm outbreaks.

Introduction

Armyworm larvae cause devastating but highly localised

damage to cereal crops and grassland (Scott, 1991), and

poor monitoring and forecasting constrain efficient con-

trol operations in many parts of east Africa (Iles &

Dewhurst, 2002). The adult moths arrive in large num-

bers at new locations being borne by prevailing winds

and concentrated by convergent wind flows associated

with rainstorms (Rose et al., 1987, 1995). Thus, eggs are

laid at high densities, and larvae emerge to destroy crops

where previously no armyworm was present. The pro-

tection of crops from armyworm requires that intensive

scouting is carried out in areas of high outbreak risk, and

the role of forecasting is to provide information about

this risk.

Historically, forecasting procedures in Tanzania involve

an institutional hierarchy of operations: farmers and local

extension officers, district agricultural officers, central

government, regional organisations (Odiyo, 1990; Day &

Knight, 1995). Forecasting is carried out at more central-

ised levels based on information obtained from lower

levels, and the forecast is passed back from central to

lower levels for action. The system relies therefore on

participation at all levels and on rapid information flow.

Centralised forecasting can be technically complex, inte-

grating moth catch and meteorological information on

a country-wide basis and comparing the current situ-

ation with historical records (Day et al., 1996). Though

the general principles of armyworm forecasting are well

established (Rose et al., 2000), the production of a cen-

tralised forecast has remained a matter of experience
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and judgement by the national or regional forecaster

concerned.

As first conceived, during a project workshop, commu-

nity-based forecasting alleviates the problems associated

with complex information flow and instead, the forecast is

both generated and acted on at the local level, the village

community (Knight, 2001). In community-based fore-

casting, a participating village makes an armyworm out-

break forecast for that village based only on the information

obtained from a single Spodoptera exempta pheromone trap

and a single rain gauge, both sited within the village. In

order to implement community-based forecasting, it was

necessary both to accommodate the limited, local nature of

the information and to provide clear instructions during the

training of village forecasters. To this end, the forecasting

decision was reduced to a simple set of rules (Day, 2004;

Holt, 2004), which were reproduced in the training materi-

als (Day et al., 2002).

With the results obtained from the first community-

based armyworm forecasting pilot studies, this study exam-

ines the accuracy of the new forecasting method. The first

pilot studies were carried out in Kilosa in 2002 (Njuki et al.,

2002). Since then the Kilosa initiative has continued and

further pilots have been carried out in new locations in

Tanzania, Kenya and Ethiopia (Holt, 2005). This study is

concerned only with an assessment of the accuracy of the

forecasting in its ability to correctly predict armyworm

outbreaks. The approaches used in training and evaluation,

the response of the farmers and the lessons for uptake and

implementation will be described in detail elsewhere; the

initiative has been very successful so far (Day, 2003;

Mushobozi, 2004).

Materials and methods

The forecast relies on a simple set of conditions, which if

met, constitute a positive forecast that an armyworm out-

break will occur. The three conditions are the presence of

vegetation, the occurrence of a minimum amount of rain-

fall and the capture of a minimum number of moths. The

forecast ismadeweekly, and the thresholds for rainfall and

moths, respectively, are that more than 5 mm falls on at

least one day in the week and a total of 30 moths are

captured during the course of the week. All three condi-

tions must hold for the forecast to be positive. The thresh-

olds have the following rationale. The ecology of

armyworm is intimately linked to rainstorms, the moths

requiring a small amount of rainfall for successful ovipo-

sition and the larvae rely on young lush vegetation on

which to feed; Holt and Day (1993) and Holt et al. (2000)

described these interactions in a model of armyworm

population dynamics. A rainfall threshold of 5 mm

indicates more than a light shower, sufficient for repro-

duction to take place and to begin to stimulate vegeta-

tion growth. The moth threshold recommended in the

Armyworm Handbook is >30 moths caught in one night

(Rose et al., 2000). Based on the experience of the

National Armyworm Forecaster for Tanzania (W. Mush-

obozi) and following some analysis of historical records

from the Tanzania National forecasts (Holt, 2004), we

used a modified, less conservative threshold of 30 moths

over the course of 1 week.

Three sets of data were selected from those years and

villages where forecasting took place throughout the

appropriate period of the armyworm season and where

there was sufficient variability on the occurrence of out-

breaks. Those seasons in which no outbreaks occurred

were omitted. The data examined were Kilosa district,

02/03 season (total of 70 forecasts from four villages),

Kilosa district 03/04 season (total of 88 forecasts from

five villages) and Moshi/Hai districts 03/04 season (total

of 68 forecasts from four villages). In each village, rainfall

and moth catches were recorded and armyworm out-

breaks were also reported as observed.

We examine the occurrence of reported outbreaks in

relation to conditions required for a positive forecast.

The forecast is made on a particular day of the week, but

an outbreak can be reported at any time. It is therefore

necessary to define a periodwithinwhich an outbreak can

be regarded as associated with a particular forecast and to

this end a 2-week window was used. Except for the very

start of the forecasting period in Kilosa 03/04, vegetation

was present throughout, and so it was necessary only to

consider two of the three conditions in this analysis, that

is, rainfall and moths.

The forecasting decision can be usefully described using

a simple Bayesian network. There are three variables or

nodes: rainfall (R), moths (M) and armyworm outbreak

(A), all having two states, the rainfall and moths thresh-

olds are met or they are not; an outbreak is reported or it

is not. Rainfall is independent of the other variables, but

the occurrence of moths is affected by rainfall and the

occurrence of outbreaks is affected by both rainfall and

moths. This leads to the directed network (Fig. 1) in

which the probability that the moth threshold is exceeded

is conditional upon rainfall and the probability that an

outbreak occurs is conditional upon both moths and rain-

fall. The joint distribution can therefore be factored as

PðA;M;RÞ ¼ PðAjM;RÞ � PðMjRÞ � PðRÞ ð1Þ

Each variable has two states, so the full network has

23 = 8, which are mutually exclusive and exhaustive

(Fig. 2). The prior probability of rain is therefore calcu-

lated by summing the probabilities of all the states with

rain across all the states of the other variables, that is,

1–4 inclusive (Fig 2).
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PðRÞ ¼
X

A#;M#

PðA#;M#;RÞ ð2Þ

The prior probabilities of moths and armyworm outbreaks

are calculated in a similar way. The combined probability

of moths and rain

PðM;RÞ ¼
X

A#

PðA#;M;RÞ ð3Þ

can be factored and rearranged to give the conditional

probability of moths given rain

PðMjRÞ ¼ PðM;RÞ=PðRÞ ð4Þ

Similar calculations give the conditional probabilities of

armyworm outbreaks given rain, and armyworm out-

breaks given moths. Rearrangement of Eqn 1 gives the

conditional probability of armyworm outbreaks given

both moths and rain

PðAjM;RÞ ¼ PðA;M;RÞ=½PðMjRÞ � PðRÞ� ð5Þ

Results

The frequencies of occurrence of each of the eight possible

combinations of events (states) are shown for the three

data sets in Table 1. The joint probabilities P(A,M,R)

were obtained by counting the number of cases of each

and then dividing by the total number of cases (Table 1).

From these, all other probabilities were calculated as

detailed above. The joint probability distributions from

the three data sets were similar suggesting some general-

ity in the results (v2 = 13.42, 14 d.f., P not significant).

The three prior probabilities P(R), P(M) and P(A) had

a reasonable balance between an event occurring and

not occurring, such that potential existed for all 23 com-

binations to occur. Combining the three data sets, the

rain threshold was exceeded in about 58% of cases; the

moth threshold, 40% of cases and outbreaks occurred,

37% of cases (Fig. 3).

Of primary interest was the extent to which the prior

probability of an outbreak was altered by information

about rainfall or moth catch. With information about

whether the rainfall threshold was exceeded (but no

moth catch information), the conditional probability of

an outbreak P(A|R) averaged about 0.45, a relatively

small increase on the prior probability of 0.37, but one

which was consistent for the three data sets (Fig. 3).

Combining all three data sets, there was a significant

association between rain and outbreaks (v2 = 7.64, 1 d.f.,

P < 0.01). With prior information about whether the

moth threshold was exceeded (but no rain information),

the conditional probability of an outbreak P(A|M) aver-

aged about 0.73, nearly double the prior probability

(association between outbreaks and moths, v2 = 84.03,

1 d.f., P < 0.001). With both rain and moth information,

the conditional probability P(A|M,R) was slightly but

consistently higher at about 0.80.

Rain threshold
P(R)

Moth threshold
P(M|R)

Armyworm outbreak
P(A|M,R)

Figure 1 A Bayesian network illustrating local armyworm outbreak

forecasting using information from a single moth trap and rain gauge

(see text for details).

Table 1 Joint distributions of cases and the probabilities of each in

the three data sets. Armyworm outbreak reported A, moth threshold

exceeded M, rainfall threshold exceeded R, : denotes ‘not’

States

Kilosa 0203 Kilosa 0304 Moshi/Hai 0304

Cases P Cases P Cases P

A,M,R 17 0.24 23 0.26 14 0.21

:A,M,R 4 0.06 2 0.02 8 0.12

A,:M,R 2 0.03 1 0.01 1 0.01

:A,:M,R 15 0.21 29 0.33 15 0.22

A,M,:R 4 0.06 5 0.06 3 0.04

:A,M,:R 6 0.09 3 0.03 2 0.03

A,:M,:R 4 0.06 5 0.06 4 0.06

:A,:M,:R 18 0.26 20 0.23 21 0.31

Total 70 88 68

P(R) P(¬R)

P(M|R) P(M|¬R)P(¬M|R) P(¬M|¬R)

P(¬A|M,R) P(¬A|M,¬R)P(¬A|¬M,R) P(¬A|¬M,¬R)

P(A|M,R) P(A|M,¬R)P(A|¬M,R) P(A|¬M,¬R)

P(¬A,M,R) P(¬A,M,¬R)P(¬A,¬M,R) P(¬A,¬M,¬R)

P(A,M,R) P(A,M,¬R)P(A,¬M,R) P(A,¬M,¬R)

1 2 3 4 5 6 7 8

Figure 2 The full network showing all possible states (: is used to

denote ‘not’, see text for details).
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Though the direct effect of rainfall on outbreak proba-

bility was not very large, moth catches were clearly asso-

ciated with rainfall. The probability of the moth catch

exceeding the threshold rose to an average of 0.52, given

the rain threshold was exceeded and fell to 0.24, when it

was not exceeded (association between moths and rain,

v2 = 84.03, 1 d.f., P < 0.001) (Fig. 3). Rainfall was there-

fore important in influencing moth catches even if there

was relatively little direct effect on the probability of an

outbreak.

An outbreak forecast was regarded as positive if both

themoth and the rain thresholdswere exceeded. The posi-

tive forecast was correct if an outbreak subsequently

occurred. The probability of a correct positive forecast

was therefore P(A|M,R) = 0.80 and the probability of an

incorrect positive forecast, Pð:AjM;RÞ ¼ 0:20. Negative

forecasts are more complicated as they are issued under

three different circumstances: rain above threshold but

moths below threshold, moths above threshold but rain

below threshold, both below threshold. Important dif-

ferences existed between the probabilities associated

with each, and the last three columns of Fig. 3 show the

probabilities of incorrect negative forecasts, that is

when outbreaks occurred but the threshold conditions

were not met. The probabilities of correct negative fore-

casts are 1 minus these values and when the moth

catch was below threshold, the conditional probabilities

of correct negative forecasts therefore averaged 0.93

and 0.81, when the rain threshold was and was not

exceeded, respectively (Table 2). A low moth catch was

therefore a reliable basis for a negative forecast. The

conditional probability of a correct negative forecast

when the moth but not the rain threshold was

exceeded was 0.50, so an incorrect forecast was equally

probable in such situations. If the moth catch exceeded

the threshold, therefore, lack of rain was not a good

basis to issue a negative forecast.

Discussion

No systematic attempt has previously beenmade to quan-

tify the accuracy of armyworm forecasts, though Odiyo

(1990) reported some verification. Prior to the commu-

nity-based forecasting initiative, the geographic scale

involved was comparatively large. In Tanzania, forecasts

are made for each district using a sparse network of

traps, perhaps one or two in each district. Holt (2004)

examined the Tanzania national armyworm trap catch

and rainfall reports for the 1994/95 armyworm season,

a season with reasonably complete trap records. There

were several instances of armyworm outbreaks taking

place in one part of a district, which were undetected by

a trap located in another part of the district. Equally,

there were instances of high trap catches and rainfall

when no outbreak was reported. Frequently, however,

traps in neighbouring districts showed similar temporal

patterns of moth catch, and so the district trap network

was a general indicator of regional armyworm popu-

lation build up.

Table 2 Conditional probabilities (combining the three data sets) of

correct and incorrect, positive and negative forecasts. Negative fore-

casts occur under three different circumstances, and the probabilities

of each is shown separately

Forecast

Threshold Exceeded* Outbreak

Outcome

Conditional

ProbabilityMoths Rain

+ve y y Correct 0.80

+ve y y Incorrect 0.20

2ve n y Correct 0.93

2ve n y Incorrect 0.07

2ve y n Correct 0.50

2ve y n Incorrect 0.50

2ve n n Correct 0.81

2ve n n Incorrect 0.19

*y, yes; n, no.
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Figure 3 Prior probabilities of the rain and moth thresholds being ex-

ceeded and of an armyworm outbreak occurring, compared with the

conditional probabilities of an armyworm outbreak, given various com-

binations of rainfall and moth catch. Prior probabilities of rain, moths

and armyworm outbreaks, P(R), P(M) and P(A), respectively; conditional

probabilities of moths given rain and no rain, P(M|R) and P(M|:R),
respectively; conditional probabilities of armyworm outbreaks given

rain, moths, both rain and moths, rain without moths, moths without

rain and neither moths nor rain P(A|R), P(A|M), P(A|M,R), P(A|:M,R),

P(A|M,:R) and P(A|:M,:R), respectively.
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The community traps operate on geographic scales

closer to the ecology of armyworm, village as opposed to

district, and the chances of unreported outbreaks are also

less. This provides an opportunity for a more meaningful

evaluation than has so far been possible. The data from the

pilot studies comprised a total of 226 forecasts made over

two seasons in nine villages, sufficient samples to begin to

assess the accuracy of the forecast. Though the forecasting

rules have an established biological basis, theywere essen-

tially formulated heuristically. This article presents the

first results from the analysis of community-based fore-

casting of armyworm, and it is useful to evaluate both

the structure of the rules and the values of the thresholds.

Caution is required, however, in suggesting implementa-

tion of changes to the rules as this would have major

retraining implications for participating villages.

The forecasting rules as conceived have proved to be

a reasonably good predictor of armyworm outbreaks. The

probability of an outbreak following a positive forecast was

approximately twice that expected by chance. Somemodi-

fication to the forecasting rules may need to be considered

in the definition of the conditions required for a negative

forecast. If the moth catch was below threshold, then the

negative forecast was reasonably accurate with the proba-

bility of an outbreak dropping to less than half that expec-

ted by chance. A problem arose, however, for cases where

themoth catchwas above threshold, but the rain threshold

was below threshold: here, the probability of an outbreak

was actually slightly larger than that expected by chance.

Whether or not, the requisite amount of rain fell in a par-

ticular week and at the specific location of the rain gauge

appeared not to be such an important constraint to the

subsequent occurrence of outbreaks. This may be because

rain may have fallen at other locations in the village or in

previous weeks and as a result, conditions suitable for

moth oviposition and larval development may exist even

if the rain threshold was not exceeded. Indeed, given that

vegetation was present (the necessary third condition for

a positive forecast) probably means that foodwas available

for the larvae. The presence of vegetation is clearly depen-

dent on adequate amounts of rainfall, and as such, it pro-

vides a measure of rainfall that changes less quickly than

rainfall itself. If there is no green vegetation in the form of

crops or grasses, then there is no risk of armyworm attack;

this condition can be regarded as defining the season for

which armyworm forecasting is necessary.

The importance of rainfall in armywormmovement and

ecology is well studied (Tucker & Pedgley, 1983; Rose et al.,

1987, 1995). Some participating farmers also reported

a perception that armyworms were associated with rains

(Njuki et al., 2004), but the conditional probability of out-

breaks, given rain exceeding the threshold, indicated only

a small effect. It is perhaps instead, the indirect effect of

rain upon moth occurrence that makes it appear that a bet-

ter correlation with rain exists than is really the case. With

information about moth catch only, the probability of

a subsequent outbreak was nearly as high as when rainfall

information was also included.

The pilot studies have so far been carried out in villages

at high risk of armyworm attack. Indeed, the prior proba-

bility of outbreaks was between 0.3 and 0.4; a relatively

high chance of armyworm attack somewhere in the vil-

lage in any one week, high enough perhaps to warrant

routine monitoring of fields even if no forecast was avail-

able. Farmers reported visiting fields more often in

response to positive forecasts (Njuki et al., 2004), so the

forecast information has changed farmer actions in

a way that may improve armyworm control and reduce

yield losses. It is, however, not easy to separate the effect

of the information contained in the forecast from the

general raising of awareness of armyworm.

As further data become available, it will become possible

tomake amore detailed critical appraisal of the forecasting

rules, for example, the values of the thresholds. So far

a threshold of 30 moths has been used throughout, ignor-

ing the so-called ‘trap factor’, that the number of moths

caught is known to depend on the position of the trap

(Odiyo, 1979). Thus, in principle, each trap could be

individually calibrated with its own threshold; whether

the extra complication introduced by such a refinement

is warranted must await sufficient data to calibrate each

village trap. This study takes the important step of estab-

lishing that even with simple, general rules the forecast

is currently operating with relatively high accuracy.
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